FANG: Leveraging Social Context for Fake News Detection Using Graph Representation

Abstract

We propose Factual News Graph (FANG), a novel graphical social context representation and learning framework for fake news detection. Unlike previous contextual models that have targeted performance, our focus is on representation learning. Compared to transductive models, FANG is scalable in training as it does not have to maintain all nodes, and it is efficient at inference time, without the need to re-process the entire graph. Our experimental results show that FANG is better at capturing the social context into a high fidelity representation, compared to recent graphical and non-graphical models. In particular, FANG yields significant improvements for the task of fake news detection, and it is robust in the case of limited training data. We further demonstrate that the representations learned by FANG generalize to related tasks, such as predicting the factuality of reporting of a news medium.

Publication
Proceedings of the 29th ACM International Conference on Information & Knowledge Management
Kazunari Sugiyama
Postdoctoral Alumnus

WING alumni; former postdoc

Min-Yen Kan
Min-Yen Kan
Associate Professor

WING lead; interests include Digital Libraries, Information Retrieval and Natural Language Processing.